Abstract

One of the branches of science where great developments are taking place today is biomaterials. Biomaterials are natural or artificial materials that can be used for the replacement of diseased or damaged organs or tissues, and in some cases they can be used for purposes such as correcting body functions or increasing the functionality of organs, replacing a living system or working in contact with living tissue. The known material types that are metallic, ceramic, polymeric and composite materials are each used as biomaterials. Among these, metallic biomaterials which are especially prominent in terms of their mechanical properties are widely used in many biomedical applications such as orthopedic implants, fracture treatment screws, braces and dental implants among the application areas of metallic biomaterials and biomedical alloys. As in all biomaterials, the most important factor determining the success of biomedical alloys is their biocompatibility. Since their first interaction with the biological systems occurs on the material surface, surface treatments are commonly used methods for improving the biocompatibility of biomedical alloys. Among these methods, the laser surface structuring method is a promising, contamination-free, non-contact and environmentally friendly surface treatment technique to modify the surface properties of materials in the biomedical industry. Nanosecond and femtosecond laser irradiation applications emerge at this point and allow to change the surface properties of different biomaterial alloys. Within the scope of this article, the changes in the surface properties of biomaterials with the effect of nanosecond and femtosecond laser irradiations, applications with different laser techniques were examined and the results were compiled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.