Abstract
This report summarizes podium presentations and breakout sessions from the second day of the 2019 M-CERSI workshop on In Vitro Dissolution Similarity Assessment in Support of Drug Product Quality: What, How, and When? Presenters from the U.S. Food and Drug Administration (FDA), Health Canada (HC), European Medicines Agency (EMA), Brazilian Health Surveillance Agency (ANVISA), and the pharmaceutical industry shared experiences/concerns with dissolution profile similarity assessment supporting minor/moderate Chemistry, Manufacturing and Control (CMC) changes. Members from regulatory agencies explained that dissolution profile similarity testing is only part of the overall assessment of the acceptability of the proposed changes; decisions are usually made based on aggregate weight of evidence. Scientific shortcomings of f2 were highlighted but no proposal on how to replace it was made. Controlling dissolution timepoint variability and application of pairwise batch-to-batch comparisons (PBC) of dissolution profiles caused considerable debate. Several industry participants suggested increased sample sizes to raise confidence in decision-making and to avoid PBC. They proposed identification of a single mathematical method with predefined acceptance criteria and suggested that dissolution timepoint selection should follow EMA and HC guidance. A majority of meeting attendees favored applying clinically relevant dissolution specifications (CRDS) and dissolution safe space to determine the impact of minor/moderate CMC changes as opposed to dissolution profile similarity assessment via statistical methods. Day 2 of the workshop highlighted the need and opportunities for global harmonization including variability, timepoint selection, role of CRDS, and statistical methods to address the ambiguity globally operating pharmaceutical companies are currently facing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.