Abstract
Machine learning (ML) is a software solution with the ability of making predictions without prior explicit programming, aiding in the analysis of large amounts of data. These algorithms can be trained through supervised or unsupervised learning. Cardiology is one of the fields of medicine with the highest interest in its applications. They can facilitate every step of patient care, reducing the margin of error and contributing to precision medicine. In particular, ML has been proposed for cardiac imaging applications such as automated computation of scores, differentiation of prognostic phenotypes, quantification of heart function and segmentation of the heart. These tools have also demonstrated the capability of performing early and accurate detection of anomalies in electrocardiographic exams. ML algorithms can also contribute to cardiovascular risk assessment in different settings and perform predictions of cardiovascular events. Another interesting research avenue in this field is represented by genomic assessment of cardiovascular diseases. Therefore, ML could aid in making earlier diagnosis of disease, develop patient-tailored therapies and identify predictive characteristics in different pathologic conditions, leading to precision cardiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.