Abstract

Patients with CKD have accelerated vascular stiffening contributing significantly to excess cardiovascular morbidity and mortality. Much of the arterial stiffening is thought to involve vascular calcification (VC), but the pathogenesis of this phenomenon is complex, resulting from a disruption of the balance between promoters and inhibitors of calcification in a uremic milieu, along with derangements in calcium and phosphate metabolic pathways. Management of traditional cardiovascular risk factors to reduce VC may be influential but has not been shown to significantly improve mortality. Control of mineral metabolism may potentially reduce the burden of VC, although using conventional approaches of restricting dietary phosphate, administering phosphate binders, and use of active vitamin D and calcimimetics, remains controversial because recommended biochemical targets are hard to achieve and clinical relevance hard to define. Increasing time on dialysis is perhaps another therapy with potential effectiveness in this area. Despite current treatments, cardiovascular morbidity and mortality remain high in this group. Novel therapies for addressing VC include magnesium and vitamin K supplementation, which are currently being investigated in large randomized control trials. Other therapeutic targets include crystallization inhibitors, ligand trap for activin receptors and BMP-7. This review summarizes current treatment strategies and therapeutic targets for the future management of VC in patients with CKD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.