Abstract

In order to characterise current and historical pattern of heavy metal (HM) pollution in Estonia, this article will compare the concentrations and stocks of Cd, Cr, Cu, Ni, Pb and Zn represented in current deposition (data from 18 local precipitation stations) with natural media of three different ages: 1–3-year-old moss carpet (ICP Vegetation moss survey data from 99 open area plots), 3–5-year-old litter layer, and several-decades-old organic layer (mor humus) of coniferous forest, in mostly podzolic soils (ICP Forest soil survey data, 75 stands).Objectives of this study are (1) to assess differences in HM retention and accumulation in various aged media of coniferous stands (2) to estimate territorial differences in current HM distribution and previously accumulated concentrations and stores of HM (3) to compare territorial distribution of HM concentration in Estonia between five different regions: N-W; N-E; S-W; S-E and Western insular region, whereas the local oil shale industry in N-E part of Estonia has been the main source of HM pollution over a long period of time and therefore may have an effect on HM regional distribution.Comparing the studied media, three types of HM retention patterns were detected: (1) for Cu, Ni, Cr (2) for Cd, Pb, (3) for Zn. The mean current level of HM deposition in Estonia is low comparison to previous decades, especially the 1980s. The effect of the previously significantly higher exposure of HM emissions and deposition is preserved in older part of soil organics (OF), where the highest stocks and concentrations of HMs (with the exception of Zn) are currently found. The HM proportions in fly ash of oil shale and in OF layer of soil were very similar with regards to Ni and Cr—indicating their origin from the oil shale industry in the N-E region. According to spatial distribution analysis, the greatest accumulated storages of Ni and Cr in OF layer of coniferous forest soils are characteristic to S-W Estonia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call