Abstract

Abstract To study the characteristics of DC negative corona discharge in a wire-cylinder configuration at an ambient temperature range of 350–850 °C, the I – V characteristics and the current composition are analyzed under different conditions. A simple method is proposed to determine the DC corona onset threshold voltage. At high ambient temperatures, in the DC negative corona discharge gap, some electrons are not attached to the electronegative gas molecules and move to the anode tube. Thus, these electrons form an electron current, which may account for most of the total discharging current. The ratio of the electron current to the total discharging current increases with increasing temperature. In a mixture of O 2 and N 2 and a mixture of CO 2 and N 2 , the ratio of electron current increases with increasing N 2 content in the mixtures. The cathode material has little influence on the corona discharge characteristics at high ambient temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.