Abstract
Androgen deprivation therapy is a cornerstone in the treatment of advanced prostate cancer and has extended the lives of countless patients. Unfortunately, many of these patients eventually succumb to metastatic castration-resistant prostate cancer (mCRPC). The efficacy of abiraterone acetate (AA, Zytiga) and enzalutamide (Enza, Xtandi) in the mCRPC setting prove that these tumors remain androgen-driven. We review recent studies that have shown that intratumoral androgen biosynthesis plays a significant role in the ever-evolving mCRPC tumor and we discuss the therapeutic implications of these findings. A novel abiraterone metabolite, 17-(pyridin-3-yl)androsta-4,16-dien-3-one (D4A), possesses robust antitumor activity in rodent models via the inhibition of androgen biosynthetic enzymes and antagonism of the androgen receptor. The TMPRSS2 : ERG fusion drives aldo-keto reductase 1C3 (AKR1C3) expression and activity to facilitate androgen biosynthesis and activate the androgen receptor in prostate cancer. Intracrine androgen formation and AKR1C3 expression and activity have been found to confer resistance to enzalutamide. These studies highlight the significant role that intratumoral androgen biosynthesis plays in the mCRPC tumor. The therapeutic implications include the inhibition of AKR1C3 in tumors that become resistant to current drugs such as abiraterone acetate or Enza and the potential administration of D4A as an mCRPC therapeutic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Current opinion in endocrinology, diabetes, and obesity
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.