Abstract

Structural characterization of macromolecular assemblies is often limited by the transient nature of the interactions. The development of specific chemical tools to covalently tether interacting proteins to each other has played a major role in various fundamental discoveries in recent years. To this end, protein engineering techniques such as mutagenesis, incorporation of unnatural amino acids, and methods using synthetic substrate/cosubstrate derivatives were employed. In this review, we give an overview of both commonly used and recently developed biochemical methodologies for covalent stabilization of macromolecular complexes enabling structural investigation via crystallography, nuclear magnetic resonance, and cryo-electron microscopy. We divided the strategies into nonenzymatic- and enzymatic-driven cross-linking and further categorized them in either naturally occurring or engineered covalent linkage. This review offers a compilation of recent advances in diverse scientific fields where the structural characterization of macromolecular complexes was achieved by the aid of intermolecular covalent linkage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.