Abstract

A continuum theoretical model for describing curling behavior of free-standing nanofilms was given in this paper. Surface stress, surface elasticity (surface Young's modulus), surface slice thickness and anisotropic deformation were considered. For a nanofilm with only several nanometers, curling behavior is apt to be more common than isotropic bending behavior. The curling behavior is an anisotropic problem and is different from isotropic bending behavior as Stoney formula interprets. The isotropic bending behavior makes nanofilm to become a ball-like object while curling behavior makes nanofilm to become a tube-like object. If surface elasticity is imbalance, surface stress sum will bend nanofilms and surface stress difference expands nanofilms. For the balance surface elasticity, surface stress sum induces isotropic elongation deformation despite the anisotropic shape of nanotubes. If surface elasticity is imbalance, the anisotropic elongation deformation in tangential and cylindrical directions appears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.