Abstract

Curli are thin, coiled fibers expressed on the surface of Escherichia coli that bind several matrix and plasma proteins such as fibronectin, laminin, plasminogen, tissue plasminogen activator, and H-kininogen. In this work, we examined the interactions between curli-expressing E. coli and human major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Curliated E. coli was found to interact with an MHC-I-expressing lymphoma cell line as shown by scanning electron microscopy, whereas the binding to a mutant variant of this cell line expressing small amounts of MHC-I molecules was significantly lower. Moreover, curli-expressing E. coli bound purified radiolabeled MHC-I but not MHC-II molecules, whereas an isogenic curli-deficient mutant strain showed no affinity for either MHC-I or MHC-II. Purified insoluble curli could also bind 125I-labeled MHC-I molecules, and in Western blot experiments the 15-kDa curlin subunit protein bound intact MHC-I molecules as well as beta2-microglobulin, the light chain of MHC-I molecules. A direct interaction between monomeric MHC-I molecules and a bacterial surface protein has previously not been reported. The binding of curli to MHC-I molecules, which are present on virtually all cells in higher vertebrates, will provide curliated E. coli with ample opportunities to interact with a great variety of hosts and host cells. This should facilitate the adaptation of E. coli to different ecological niches, and in human infections the interaction between curli and MHC-I molecules could contribute to adherence and colonization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call