Abstract
Exploring the full spectrum of novel behaviors that a system can produce can be an intensive task. Sampling techniques developed in response to this exploration challenge often require a predefined metric, such as distance in a space of known order parameters. However, order parameters are rarely known for nonequilibrium systems, especially in the absence of a diverse set of example behaviors, creating a chicken-and-egg problem. Here, we combine active and unsupervised learning for automated exploration of nonequilibrium systems with unknown order parameters. We iteratively use active learning based on current order parameters to expand the library of behaviors and relearn order parameters based on this expanded library. We demonstrate the utility of this approach in Kuramoto models of increasing complexity. In addition to reproducing known phases, we reveal previously unknown behavior and related order parameters, and we demonstrate how to align search with human intuition. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.