Abstract

The curing kinetics of a bi-component system about o-cresol-formaldehyde epoxy resin (o-CFER) modified by liquid crystalline p-phenylene di[4-(2,3-epoxypropyl) benzoate] (p-PEPB), with 3-methyl-tetrahydrophthalic anhydride (MeTHPA) as a curing agent, were studied by non-isothermal differential scanning calorimetry (DSC) method. The relationship between apparent activation energy Ea and the conversion α was obtained by the isoconversional method of Ozawa. The reaction molecular mechanism was proposed. The results show that the values of Ea in the initial stage are higher than other time, and Ea tend to decrease slightly with the reaction processing. There is a phase separation in the cure process with LC phase formation. These curing reactions can be described by the Sestak–Berggren (S–B) equation, the kinetic equation of cure reaction as follows: \( {\frac{{{\text{d}}\alpha }}{{{\text{d}}t}}} = A\exp \left( { - {\frac{{E_{\text{a}} }}{RT}}} \right)\alpha^{m} \left( {1 - a} \right)^{n} \).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.