Abstract

Metal foils are being widely used, from the chemical or electronics sector to household appliances. The joining of these foils by adhesive bonding is often the preferred method due to discolouring and warping under the thermal stresses of other joining methods, such as welding. However, long curing times are a disadvantage of adhesive bonding compared to welding. The use of electromagnetic induction is a promising solution for accelerated curing. This work investigates induction heating for accelerated curing of 1-C epoxy adhesives for bonding of thin nickel foils. Process parameters for rapid curing of the adhesives were determined based on reaction kinetics using differential scanning calorimetry measurements. According to those results peel test specimens were fabricated, and the peel resistance was evaluated using a 90° peel load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.