Abstract

We report on the control of cyclotrimerization forming a polycyanurate polymer using magnetic iron oxide nanoparticles in an alternating-current (ac) field as an internal heat source, starting from a commercially available monomer. Magnetic nanoparticles were dispersed in the monomer and catalytic system using sonication, and the mixture was subjected to an alternating magnetic field, causing the magnetic nanoparticles to dissipate the energy of the magnetic field in the form of heat. Internal heating of the particle/monomer/catalyst system was sufficient to start and sustain the polymerization reaction, producing a cyanate ester network with conversion that compared favorably to polymerization through heating in a conventional laboratory oven. The two heating methods gave similar differential scanning calorimetry temperature profiles, conversion rates, and glass transition temperatures when using the same temperature profile. The ability of magnetic nanoparticles in an ac field to drive the curing reaction should allow for other reactions forming high-temperature thermosetting polymers and for innovative ways to process such polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.