Abstract

ABSTRACTThis work focuses on examining the curing process of neat oligo(ethylene‐2‐mercaptosuccinate) using differential scanning calorimetry (DSC), rheology, and Fourier transform infrared (FTIR) spectroscopy. The thiol‐containing resin offers much promise as a bioabsorbable polymer in medical field and as a reusable thermoset in sustainable applications. Although curing between thiol groups has been investigated in solutions, studies of neat materials without solvent are rare. Here, the evolution of glass transition temperature (Tg), complex shear modulus (G*), gelation, and chemical structure are monitored as a function of isothermal curing time and temperature. Both Tg and G* increase with curing, indicating the formation of polymer networks. The conversion of the cure is determined from the DiBenedetto equation and is found to follow a second‐order plus second‐order autocatalytic reaction model. Importantly, the intensity of the S–H bond absorption decreases with the extent of curing, which confirms the curing mechanism, i.e., disulfide formation between the thiol groups. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43205.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call