Abstract
AbstractThe thermal curing chemistry of a fluorinated polyamic acid based on 6FDA (hexafluoroisopropylidene bis(phthalic anhydride)) and APBP (4,4′-bis(4-aminophenoxy)biphenyl) was studied by thermal-IR spectroscopy. Anhydride formation was observed at intermediate cure temperatures and maximized at approximately 220°C. The degree of anhydride formation was affected by the solvent, being least in 2-methoxyethyl ether and increasing in the solvent order: 2-methoxyethyl ether < NMP < 2-(2-ethoxy)ethoxyethanol. In addition to the back reaction of amic acid to anhydride and amine, at least one additional mechanism of anhydride formation is observed. The onset of the second mechanism of anhydride formation is coincident with the onset of imidization, which leads us to propose that water generated by imidization can react with anhydride during the curing process, before escaping from the film, to form diacid. Cyclization of diacid to anhydride is proposed as the second mechanism of anhydride formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.