Abstract
The cure properties of cure-accelerated phenol-urea-formaldehyde (PUF) resins with different catalysts [calcium oxide (CaO), sodium carbonate (Na2CO3), zinc oxide (ZnO), and magnesium oxide (MgO)] were investigated by gelation test and differential scanning calorimetry (DSC) analysis. The results indicated that catalysts such as Na2CO3, ZnO, and MgO were capable of increasing the curing rate and decreasing the curing temperature of PUF resins, however, the CaO inhibited the cure reaction. The formation of methylene bridges was considered to be the main reaction during curing. For the ZnO- and MgO-accelerated PUF resins, the addition reaction of formaldehyde with free phenolic site may act as subsidiary reaction. The activation energies (E a ) of cure-accelerated PUF resins other than CaO-acceleration were much lower than the control resin. The effects of catalysts and hot press temperature on adhesive performances of PUF resins were also discussed by plywood test. The PUF resins with Na2CO3, ZnO, and MgO had higher wet shear strength than the control resin. Hot press temperature had a strong influence on the wet shear strength as well as the catalysts. Among the catalysts, MgO had more significant improving effect on both the curing process and the wet shear strength of PUF resin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.