Abstract

The cure of unsaturated polyester was studied experimentally and by using a model of the process. The kinetic parameters were calculated from the heat flow–time curves obtained by differential scanning calorimetry (DSC, Netzsch—Simultaneous Thermal Analyzer DSC 200), working in DSC (dynamic) mode. The temperature–time histories were studied in a cylindrically shaped copper mold. Taking into account the heat transferred due to conduction through the resin, as well as the kinetics of heat generated in the cure reaction, a numerical model was constructed. The contributions to the rise in temperature from heat conduction and chemical reaction are different in different parts of the composite, which can explain the temperature–time, or conversion–time histories. Introduction of a carbon-base filler reduced the amount of heat released in the composite and, as a result, lowered the temperatures through the resin. Finally, a good agreement between experimental data and the predicted mathematical model of the curing process in the mold was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call