Abstract

AbstractThe cure kinetics of naphthyl/dicyclopentadiene epoxy resin and bisphenoxy (3‐hydroxy) phosphine oxide was investigated by differential scanning calorimetry (DSC) under nonisothermal and isothermal condition. The advanced isoconversional method was used to study the nonisothermal DSC data, the effective activation energy of the curing system in the early stage agreed with the value calculated from the Kissinger model and then increased because of the hindrance of molecular mobility. Autocatalytic behavior was shown in the isothermal DSC measurement, which was well described by Kamal model in the early curing stage. In the later stage, a crosslinked network structure was formed and the curing reaction was mainly controlled by diffusion. The diffusion factor was introduced to optimize the Kamal model and correct the deviation of the calculated data. The physical properties of the cured polymer were evaluated by dynamic mechanical thermal analyses, thermogravimetric analyses, and limiting oxygen index test, which exhibited relatively high glass transition temperature, thermal stability, and flame retardancy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.