Abstract

AbstractBio‐based resins are an alternative to petroleum‐based resins in the production of fiber‐reinforced polymers (FRPs) by processes such as pultrusion. A detailed understanding of the cure behavior of the resin is essential to determine the process variables for production of FRPs. In this work, the cure kinetics of soybean oil‐styrene‐divinylbenzene thermosetting polymers is characterized by differential scanning calorimetry (DSC) measurements. By varying the concentration of the cationic initiator from 1 to 3 weight percent (wt %), the most viable resin composition for pultrusion is identified. The ability of phenomenological reaction models to describe the DSC measurements for the optimum resin composition is tested and kinetic equations, which can be used to determine the degree of cure at any temperature and time, are determined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.