Abstract

Cure behavior, miscibility, and phase separation have been studied in blends of polyphenylene oxide (PPO) with diglycidyl ether of bisphenol A (DGEBA) resin and cyanate ester hardener. An autocatalytic mechanism was observed for the epoxy/PPO blends and the neat epoxy. It was also found that the epoxy/PPO blends react faster than the neat epoxy. During cure, the epoxy resin is polymerized, and the reaction-induced phase separation is accompanied by phase inversion upon the concentration of PPO greater than 50 phr. The dynamic mechanical measurements indicate that the two-phase character and partial mixing existed in all the mixtures. However, the two-phase particulate morphology was not uniform especially at a low PPO content. In order to improve the uniformity and miscibility, triallylisocyanurate (TAIC) was evaluated as an in situ compatibilizer for epoxy/PPO blends. TAIC is miscible in epoxy, and the PPO chains are bound to TAIC network. SEM observations show that adding TAIC improves the miscibility and solvent resistance of the epoxy/PPO blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 26–34, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call