Abstract

Curcumin has been shown to possess potent chemopreventive and antitumor effects on prostate cancer. However, the molecular mechanism involved in curcumin's ability to suppress prostate cancer cell invasion, tumor growth, and metastasis is not yet well understood. In this study, we have shown that curcumin can suppress epidermal growth factor (EGF)- stimulated and heregulin-stimulated PC-3 cell invasion, as well as androgen-induced LNCaP cell invasion. Curcumin treatment significantly resulted in reduced matrix metalloproteinase 9 activity and downregulation of cellular matriptase, a membrane-anchored serine protease with oncogenic roles in tumor formation and invasion. Our data further show that curcumin is able to inhibit the induction effects of androgens and EGF on matriptase activation, as well as to reduce the activated levels of matriptase after its overexpression, thus suggesting that curcumin may interrupt diverse signal pathways to block the protease. Furthermore, the reduction of activated matriptase in cells by curcumin was also partly due to curcumin's effect on promoting the shedding of matriptase into an extracellular environment, but not via altering matriptase gene expression. In addition, curcumin significantly suppressed the invasive ability of prostate cancer cells induced by matriptase overexpression. In xenograft model, curcumin not only inhibits prostate cancer tumor growth and metastasis but also downregulates matriptase activity in vivo. Overall, the data indicate that curcumin exhibits a suppressive effect on prostate cancer cell invasion, tumor growth, and metastasis, at least in part via downregulating matriptase function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.