Abstract

Non-small-cell lung cancer therapy is a challenge due to poor prognosis and low survival rate. There is an acute need for advanced therapies having higher drug efficacy, low immunogenicity and fewer side effects which will markedly improve patient compliance and quality of life of cancer patients. The purpose of this study was to develop a novel hybrid curcumin nanoformulation (Curcumin-ER) and evaluate the therapeutic efficacy of this formulation on a non-small cell lung cancer xenograft model. Use of curcumin, a natural anticancer agent, is majorly limited due to its poor aqueous solubility and hence it's low systemic bioavailability. In this paper, we carried out the nanoformulation of Curcumin-ER, optimized the formulation process and determined the anticancer effects of Curcumin-ER against human A549 non-small cell lung cancer using in vitro and in vivo studies. Xenograft tumors in nude mice were treated with 20 mg/kg subcutaneous injection of Curcumin-ER and liposomal curcumin (Lipocurc) twice a week for seven weeks. Results showed that tumor growth was suppressed by 52.1% by Curcumin-ER treatment and only 32.2% by Lipocurc compared to controls. Tumor sections were isolated from murine xenografts and histology and immunohistochemistry was performed. A decrease in expression of NFκB-p65 subunit and proliferation marker, Ki-67 was observed in treated tumors. In addition, a potent anti-angiogenic effect, characterized by reduced expression of annexin A2 protein, was observed in treated tumors. These results establish the effectiveness of Curcumin-ER in regressing human non-small cell lung cancer growth in the xenograft model using subcutaneous route of administration. The therapeutic efficacy of Curcumin-ER highlights the potential of this hybrid nanoformulation in treating patients with non-small cell lung cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call