Abstract

It has been reported the anti-tumor action of curcumin on colorectal cancer. In this study, we aimed to explore the potential mechanisms underlying curcumin in the development of colorectal cancer. CCK-8, EdU, flow cytometry, and transwell invasion assays were conducted to investigate the function role of curcumin in cell proliferation, apoptosis, and invasion. The level of miR-134-5p and CDCA3 was determined using RT-qPCR analysis. Western blot was applied for detecting the levels of c-myc, MMP9, CDCA3, and CDK1. Dual-luciferase reporter assay was used to evaluate the relationship between miR-134-5p and CDCA3, and IP assay was performed to examine the interaction between CDCA3 and CDK1. Additionally, SW620 cells were injected into the mice to form the xenograft tumor model. Curcumin treatment repressed cell growth and invasion, and induced cell apoptosis in HCT-116 and SW620 cells. Curcumin elevated miR-134-5p expression and restrained CDCA3 expression in HCT-116 and SW620 cells. MiR-134-5p inhibitor or CDCA3 overexpression could restore the effects of curcumin on cell growth, apoptosis, and invasion in HCT-116 and SW620 cells. MiR-134-5p targeted CDCA3, and CDCA3 could rescue the repressive effects of miR-134-5p on the progression of colorectal cancer. Moreover, CDCA3 interacted with CDK1, and CDK1 overexpression blocked the suppressive effects of CDCA3 downregulation on the development of colorectal cancer. In addition, curcumin treatment repressed tumor growth in colorectal cancer via increasing miR-134-5p and downregulating CDCA3 and CDK1 expression in vivo. Our findings provided the evidence that curcumin upregulated miR-134-5p to inhibit the progression of colorectal cancer by regulating CDCA3/CDK1 pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call