Abstract

Curcumin is an antiinflammatory molecule, however, due to its lipophilic nature, has the limitation of very low aqueous solubility and degrades rapidly when dispersed in aqueous media. The potential of sunflower seed protein isolate (SFPI), one of the underutilized plant protein, as a drug carrier was studied by synthesizing SFPI nanoparticles (NPs) and encapsulating curcumin in NPs. Increase in solubility of encapsulated curcumin was observed with an encapsulation efficiency of 83%. Stability studies showed that curcumin-SFPI NPs are stable in water and in gastrointestinal condition. The mechanism of interaction of curcumin involves the binding with the hydrophobic patches of protein. In complex with NPs, curcumin showed potent antioxidant activity; antiinflammatory effect of curcumin was studied by following lipoxygenase inhibition (IC50 =45.3µM). The study explores the potential of sunflower seed protein to be used as carrier for delivery of nutraceutical by taking curcumin as model compound. PRACTICAL APPLICATIONS: Sunflower seed protein is one of the versatile, quality proteins found in abundance; yet it is an underutilized plant protein. The study exploits the use of sunflower seed protein as a delivery system for lipophilic nutraceuticals by synthesizing NPs and encapsulating them. Solubility and stability of curcumin is increased along with enhanced antioxidant and antiinflammatory activity in complex with SFPI NPs when compared to free curcumin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.