Abstract
A decrease in GSH levels, the main redox regulator, can be observed in neurodegenerative diseases as well as in schizophrenia. In search for substances able to increase GSH, we evaluated the ability of curcumin (polyphenol), quercetin (flavonoid), and tert-butylhydroquinone (tBHQ) to up-regulate GSH-synthesizing enzymes. The gene expression, activity, and product levels of these enzymes were measured in cultured neurons and astrocytes. In astrocytes, all substances increased GSH levels and the activity of the rate-limiting synthesizing enzyme, glutamate cysteine ligase (GCL). In neurons, curcumin and to a lesser extent tBHQ increased GCL activity and GSH levels, while quercetin decreased GSH and led to cell death. In the two cell types, the gene that showed the greatest increase in its expression was the one coding for the modifier subunit of GCL (GCLM). The increase in mRNA levels of GCLM was 3 to 7-fold higher than that of the catalytic subunit. In astrocytes from GCLM-knock-out mice showing low GSH (-80%) and low GCL activity (-50%), none of the substances succeeded in increasing GSH synthesis. Our results indicate that GCLM is essential for the up-regulation of GCL activity induced by curcumin, quercetin and tBHQ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.