Abstract

Objective(s):Endothelial dysfunction is a precursor of cardiovascular disease, and protecting endothelial cells from damage is a treatment strategy for atherosclerosis (AS). Curcumin, a natural polyphenolic compound, has been shown to protect endothelial cells from dysfunction. In the present study, we investigated whether curcumin could ameliorate high oxidized low-density lipoprotein (ox-LDL)-induced endothelial lipotoxicity by inducing autophagy in human umbilical vein endothelial cells (HUVECs).Materials and Methods:HUVECs were treated with 50 μM high ox-LDL alone or in combination with 5 μM curcumin for 24 hr. Cell viability and function were assessed by the cell counting kit-8 (CCK-8) assay, tube formation assay and cell migration experiments. Oil red O staining was used to detect lipid droplet accumulation in HUVECs. The change in reactive oxygen species (ROS) levels in HUVECs was measured with the probe DCFH-DA. Quantitative real-time PCR (qPCR) and Western blotting were used to evaluate the mRNA and protein levels of several inflammatory and autophagy-related factors.Results:Cell viability was restored, tube formation and migration ability were increased, and lipid accumulation, oxidative stress and inflammatory responses were decreased in the curcumin-treated group compared with the high ox-LDL group. Furthermore, high ox-LDL inhibited HUVEC autophagy, and this effect was reversed by curcumin. Moreover, curcumin regulated the expression of several key proteins involved in the AMPK/mTOR/p70S6K signaling pathway.Conclusion:Our findings suggest that curcumin is able to reduce endothelial lipotoxicity and modulate autophagy and that the AMPK/mTOR/p70S6K pathway might play a key role in these effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call