Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder worldwide. Currently, treatment options can only relieve symptoms but cannot prevent, slow, or halt the neurodegenerative process of PD. Much evidence has suggested that microglia-mediated neuroinflammation is involved in the pathophysiology of PD. As an anti-inflammatory agent, curcumin may exert a neuroprotective effect on PD. However, its mechanism has yet to be demonstrated clearly. Our results indicated that curcumin alleviated rotenone-induced behavioral defects, dopamine neuron loss, and microglial activation. Besides, the NF-κB signaling pathway, the NLRP3 inflammasome, and pro-inflammatory cytokines, including IL-18 and IL-1β, contributed to the microglia-mediated neuroinflammation in PD. Furthermore, Drp1-mediated mitochondrial fission causing mitochondrial dysfunction also had an etiological role in the process. This study suggests that curcumin protects against rotenone-induced PD by inhibiting microglial NLRP3 inflammasome activation and alleviating mitochondrial dysfunction in mice. Thus, curcumin may be a neuroprotective drug with promising prospects in PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.