Abstract
BackgroundDoxorubicin (DOX)-induced neurotoxicity is widely reported in previous studies. Oxidative stress has been validated as a critical event involved in DOX-induced neurotoxicity. As a selective autophagy adaptor protein, p62 is reported to regulate Keap1-Nrf2-ARE antioxidant pathway in response to oxidative stress. Curcumin (CUR) relieves depressive-like state through the mitigation of oxidative stress and the activation of Nrf2-ARE signaling pathway. However, the exact mechanism of CUR in alleviating DOX-induced neurotoxicity is still unknown.Materials and methodsThe rats were randomly divided into three groups: control group, DOX group, and DOX + CUR group. At the end of 3 weeks, the behavior tests as sucrose preference test (SPT), forced swimming test (FST), and novelty-suppressed feeding test (NSFT) were performed to assess anxiety- and depression-like behaviors. The rats were sacrificed after behavior tests, and the brain tissues were collected for biochemical analysis.ResultsIt was observed that the administration of CUR could effectively reverse DOX-induced depressive-like behaviors. The exposure of DOX activated autophagy and increased oxidative stress levels, and the administration of CUR could significantly inhibit DOX-induced autophagy and suppress oxidative stress. More importantly, we also found that Keap1-Nrf2-ARE signaling pathway was involved in DOX-induced neurotoxicity and oxidative stress regulated by autophagy.ConclusionOur study demonstrated that CUR could effectively reverse DOX-induced neurotoxicity through suppressing autophagy and mitigating oxidative stress and endoplasmic reticulum (ER) stress.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.