Abstract

Studies have demonstrated thatnatural products, such as curcumin and artemisinin,possess anti-inflammatory effects, which can be beneficial for cancer treatment.Tehranolide, as a novel natural product, has a wide range of biological activities, including anti-cancer effects. However,many properties of Tehranolide, like its anti-inflammatory activity and its combination with curcumin, have not been investigated yet. This investigation examined the anti-inflammatory activity of Tehranolide, either alone or in combination with curcumin, via modulating the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and STAT3 (signal transducer and activator of transcription 3) signaling pathways in MDA-MB-231 and SKOV3, breast and ovarian cancer cell lines. ELISA-based methods were employed to measure the pro-inflammatory cytokine levels and the NF-κB activity in lipopolysaccharide (LPS)-induced cells. The real-time PCR experiment and Griess test were performed to evaluate inducible nitric oxide synthase (iNOS) gene expression and nitrite levels, respectively. The STAT3 and NF-κB signaling pathways were investigated by Western blotting analysis. Tehranolide's anti-cancer activity was also assessed in a mouse model of breast cancer using the TUNEL (terminal deoxynucleotidyl transferase nick-end labeling) assay. Tehranolide diminished levels of pro-inflammatory cytokines in cancer cells. Additionally, it suppressed NF-κB DNA binding and STAT3 phosphorylation, reducing iNOS gene expression and nitrite production. Moreover, Western blotting showed that Tehranolide enhanced the inhibitory κB (IκBα) and Bcl-2 (B-cell lymphoma 2)-associated X (BAX) expression, and downregulated the expression of Bcl-2 proteins. Furthermore, the TUNEL assay demonstrated that Tehranolide induced apoptosis in a breast cancer mouse model. Curcumin potentiated all the anti-inflammatory effects of Tehranolide. This investigation indicated for the first time that Tehranolide, either alone or in combination with curcumin, exerted its anti-inflammatory effects by suppressing NF-κB and STAT3 signaling pathways in SKOV3 and MDA-MB-231 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call