Abstract
Curcumin, a natural polyphenol derived from the spice turmeric (Curcuma longa), contains antioxidant, anti-inflammatory, and anti-cancer properties. However, curcumin bioavailability is inherently low due to poor water solubility and rapid metabolism. Here, we further refined for use curcumin incorporated into “biomimetic” nanolipoprotein particles (cNLPs) consisting of a phospholipid bilayer surrounded by apolipoprotein A1 and amphipathic polymer scaffolding moieties. Our cNLP formulation improves the water solubility of curcumin over 30-fold and produces nanoparticles with ~350 µg/mL total loading capacity for downstream in vitro and in vivo applications. We found that cNLPs were well tolerated in AG05965/MRC-5 human primary lung fibroblasts compared to cultures treated with curcumin solubilized in DMSO (curDMSO). Pre-treatment with cNLPs of quiescent G0/G1-phase MRC-5 cultures improved cell survival following 137Cs gamma ray irradiations, although this finding was reversed in asynchronously cycling log-phase cell cultures. These findings may be useful for establishing cNLPs as a method to improve curcumin bioavailability for administration as a radioprotective and/or radiomitigative agent against ionizing radiation (IR) exposures in non-cycling cells or as a radiosensitizing agent for actively dividing cell populations, such as tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.