Abstract

This work studies the capacity of curcumin to inhibit tumor necrosis alpha (TNFα)-induced inflammation, oxidative stress, and loss of intestinal barrier integrity, characterizing the underlying mechanisms. Caco-2 cell monolayers are incubated with TNFα (10ng mL-1 ), in the absence or presence of curcumin. TNFα causes an increase in interleukin (IL)-6 and IL-8 release, which is inhibited by curcumin in a dose-dependent manner (half-maximal inhibitory concentration (IC50 ) = 3.4 µM for IL-6). Moreover, TNFα leads to: i) increased intercellular adhesion molecule 1 (ICAM-1) and NLRP3 inflammasome expression; ii) increased cell monolayer permeability and decreased levels of tight junction proteins; iii) increased cellular and mitochondrial oxidant production; iv) decreased mitochondrial membrane potential and complex I-III activity; v) activation of redox-sensitive pathways, i.e., nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun N-terminal kinases (JNK); and vi) increased myosin light-chain kinase (MLCK) expression and phosphorylation levels of myosin light-chain protein MLC. Curcumin (2-8 µM) inhibits all these TNFα-triggered undesirable outcomes, mostly showing dose-dependent effects. The inhibition of NF-κB, ERK1/2, and JNK activation could be in part involved in the capacity of curcumin to mitigate intestinal inflammation, oxidant production, activation of redox-sensitive pathways, and prevention of monolayer permeabilization. These results support an action of dietary curcumin in sustaining gastrointestinal tract physiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.