Abstract

Background/Aims: Rhabdomyolysis (RM) is a potentially life-threatening condition that results from the breakdown of muscle and consequent release of toxic compounds into circulation. The most common and severe complication of RM is acute kidney injury (AKI). This study aimed to evaluate the efficacy and mechanisms of action of curcumin-loaded nanoparticles (Cur-NP) for treatment of RM-induced AKI. Methods: Curcumin-NP was synthesized using the nanocarrier distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) to achieve a prolonged and constant drug release profile compared with the curcumin-free group. The anti-AKI effects of Curcumin-NP were examined both in vitro (myoglobin-treated renal tubular epithelial HK-2 cells) and in vivo (glycerol-induced AKI model). Results: Our results indicated that Curcumin-NP reversed oxidative stress, growth inhibition and cell apoptosis accompanied with down-regulation of apoptotic markers Caspase-3 and GRP-78 in vitro. In vivo studies revealed enhanced AKI treatment efficacy with Curcumin-NP as characterized by reduced serum creatine phosphokinase (CPK), creatinine (Cr) and urea and less severe histological damage in renal tubules. In addition, kidney tissues from Curcumin-NP-treated AKI rats exhibited reduced oxidative stress, apoptosis, and cleaved Capase-3 and GRP-78 expression. Conclusion: Our results suggest that nanoparticle-loaded curcumin enhances treatment efficacy for RM-induced AKI both in vitro and in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call