Abstract

A pullulan (Pul)-derivative hydrogel was developed by introducing methacrylate (MA) groups and β-cyclodextrin (βCD) to form a Pul-βCD-MA hydrogel by UV cross-linking. The MA was expected to improve the hydrogel's mechanical properties and the βCD to increase the solubility of curcumin. Pul-βCD-MA was successfully synthesized, as confirmed by the 1H NMR and FTIR spectra. Hydrogels were formed at Pul-βCD-MA concentrations of 5 %, 7.5 %, or 10 % w/v. Pul-βCD-MA showed enhanced curcumin solubility compared to Pul or Pul-MA. The morphological analysis of the hydrogel showed a porous structure. The concentration of βCD affected the hydrogels' mechanical properties, and the 7.5 % hydrogel (with or without curcumin) did not fracture. The cumulative release of curcumin in the 7.5 % Pul-βCD-MA hydrogel was 60 % over 8 h. The release profile fit the Korsmeyer-Peppas model. In vitro cytotoxicity tests revealed that hydrogels were biocompatible with human primary dermal fibroblast cells. Curcumin-loaded Pul-βCD-MA hydrogels significantly accelerated wound healing compared to Pul-βCD-MA hydrogels without curcumin loading. Therefore, the Pul derivative's hydrogel may be a promising material for wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call