Abstract

The resistance of staphylococcus aureus and Acinetobacter baumannii to antimicrobial agents results in chronic infections, making removing contaminants from wastewater essential for environmental remediation. Removing hazardous pollutants from wastewater and inhibiting biofilm formation is important for environmental remediation. This study effectively built biocompatible curcumin-loaded hydroxyapatite nanoparticles (Cur-HAp NPs) using a simple in-situ precipitation technique. Various analytical characterization techniques were used to evaluate the structural, morphological, and chemical composition of the synthesized NPs. Combining a highly bioactive natural curcumin pigment with hydroxyapatite NPs could maintain its pharmacological activity and exhibit a sustained release profile of curcumin. The antibiofilm activities against single and mixed dual species of S. aureus and A. baumannii were evaluated using crystal violet staining techniques. Excellent antibiofilm activities were demonstrated by Cur-HAp NPs against S. aureus, A. baumannii, and mixed dual species, with respective efficiency percentages of 76.7, 85.6, and 68.8 % inhibition upon treatment, respectively. In addition, Cur-HAp NPs demonstrated excellent dye adsorption against Congo red dye by approximately 95.6 %. Cur-HAp could absorb up to 112.4 mg/g of dye at a time. Negative ΔG value (−1.372 kJ mol−1) indicates the spontaneous and feasible dye absorption onto Cur-HAp. The Langmuir adsorption isotherm and pseudo-second-order equation provided the best fit for the Cur-HAp NPs. Therefore, the sustained drug release behavior of Cur-HAp NPs is a promising candidate for combatting antibiofilm activity and dye removal capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.