Abstract

Bacterial infections and multidrug resistance can seriously endanger the health and lives of humans, therefore the development of novel and efficient antibacterial strategies and drugs is urgently needed. Herein, a series of highly biocompatible lysine modified enzymatic hydrolysis lignins (EHL-Lys-x) were synthesized using the Mannich reaction. The sterilizing efficiency of EHL-Lys-2.0 against S. aureus and E. coli at 20 mg mL-1 is 93% and 50%, respectively, which is 26% higher than pure EHL. Quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) analysis showed that the adsorption and adhesive force between EHL-Lys-x and bacteria increase with the increased amount of grafting of Lys on EHL owing to the increase of the electrostatic interaction between the EHL-Lys-x and bacteria, which results in an improvement in the antimicrobial activity of EHL-Lys-x. Subsequently, EHL-Lys-x combined with alkyl polyglucoside (APG) was used to stabilize the high internal phase emulsion containing curcumin (HIPEs-cur). The dispersed phase fraction of HIPE-cur is 87 vol%, which is the highest internal phase reported to date in the medical research area. The highest residual levels of curcumin in HIPEs are 60-fold, 3-fold and 5-fold compared to that in bulk oil after treatment with UV radiation, thermal emittance and after storage, respectively. The minimum inhibitory concentrations of HIPEs-cur against S. aureus and E. coli were found to be 1.56 and 6.25 mg mL-1, respectively, which are far higher than that of pure EHL-Lys-x. This strategy not only increases the chemical stability and bioavailability of curcumin, but also provides a novel method for the application of lignin in biomedical science.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call