Abstract

Curcumin is a curcuminoid, which is an active constituent of turmeric and is obtained from the rhizomes of Curcuma longa, family Zingiberaceae. Curcumin modulates the activity of various transcription factors and regulates the expression of inflammatory enzymes, cell survival proteins, adhesion molecules and cytokines by binding to a variety of proteins and inhibiting the activity of various kinases. Curcumin falls in the BCS class IV drug, with poor solubility and poor permeability which makes it very challenging to utilize the maximum therapeutic potential of this moiety Objective: The major aim of the study was to enhance transdermal penetration of curcumin via ethosomal gel and to overcome the barriers of poor permeability of transdermal drug delivery. Curcumin loaded ethosomes were prepared with varying quantities of ethanol and soya lecithin by the cold method and were optimised based on entrapment efficiency, vesicular size and Ex-vivo studies. Optimised ethosomal formulation was further incorporated into a gel and was evaluated. Ex-vivo studies were performed with the ethosomal gel of curcumin and was compared with simple drug solution. Prepared ethosomal system showed a vesicle size ranging from 211 to 320 nm with spherical, smooth surface and entrapment efficiency of 87 to 91%. Optimised ethosomal system (ET3) was incorporated into gel and was further evaluated. The findings of the research work suggested that the ethosomal gel holds excellent potential for transdermal delivery of curcumin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call