Abstract

In this research, programmed death ligand 1 (PDL1) binding peptide was used for targeted delivery of curcumin to high PDL1-expressing breast cancer cells. Human serum albumin-curcumin nanoparticles (HSA/Cur NP) were first prepared by desolvation method and then functionalized with PDL1 binding peptide. Peptide conjugation to HSA/Cur NPs was confirmed by Fourier transform infrared and UV–visible spectroscopy. The formation of HSA/Cur NP was characterized by transmission electron microscope and scanning electron microscope. The size and zeta potential were determined by dynamic light scattering. The average particle size of the HSA/Cur NPs and peptide-HSA/Cur NPs were 197 and 246.5 nm, respectively. Evaluation of cellular uptake showed enhanced internalization of peptide-HSA/Cur NPs in high PDL1-expressing cancer cells compared to HSA/Cur NPs. The cell viability and apoptosis determination demonstrated higher cytotoxicity of HSA/Cur NPs relative to free curcumin in breast cancer cells. Peptide conjugation to HSA/Cur NPs increased cytotoxicity significantly concerning high PDL1-expressing breast cancer cells. In conclusion, peptide-HSA/Cur NPs improved cellular uptake and cytotoxicity of HSA/Cur NPs in high PDL1-expressing breast cancer cells. These results suggest that PDL1 has potential to be used as a target for selective drug delivery and promising candidate for the treatment of PDL1-expressing breast cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.