Abstract

Inflammatory bowel disease (IBD) is a serious public health issue because of its chronic and incurable nature. Common IBD drugs have limited efficacy and produce adverse effects, leading to an urgent need to develop new drugs and drug delivery systems. Curcumin (Cur) is a natural and nontoxic drug that is increasingly used in the treatment of IBD owing to its anti-inflammatory and antioxidant effects. Metal-polyphenol networks constructed from metal ions and polyphenols exhibit biological functionality while acting as an adhesive nanomaterial to encapsulate nano-Cur, thereby improving its solubility and drug release behavior. In this study, we prepared a Cur@Fe&TA nanodrug delivery system by constructing an Fe3+/tannic acid (TA) metal-polyphenol network with encapsulated Cur. The Cur@Fe&TA nanodrug exhibited good stability, drug release behavior, and biocompatibility. Based on the anti-inflammatory and antioxidant effects of Cur@Fe&TA, the gastrointestinal cytopathology in an IBD mouse model was effectively improved. The proposed Cur@Fe&TA nanomedicine delivery system has promising application and research value for the treatment of IBD by regulating levels of antioxidants and inflammatory cytokines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call