Abstract

Atherosclerotic cardiovascular disease (ASCVD) has become the leading cause of death worldwide, and early diagnosis and treatment of atherosclerosis (AS) are crucial for reducing the occurrence of acute cardiovascular events. However, early diagnosis of AS is challenging, and oral anti-AS drugs suffer from limitations like imprecise targeting and low bioavailability. To overcome the aforementioned shortcomings, Cur/MOF@DS is developed, a nanoplatform integrating diagnosis and treatment by loading curcumin (Cur) into metal-organic frameworks with nanozymes and magnetic resonance imaging (MRI) properties. In addition, the surface-modification of dextran sulfate (DS) enables PCN-222(Mn) effectively target scavenger receptor class A in macrophages or foam cells within the plaque region. This nanoplatform employs mechanisms that effectively scavenge excessive reactive oxygen species in the plaque microenvironment, promote macrophage autophagy and regulate macrophage polarization to realize lipid regulation. In vivo and in vitro experiments confirm that this nanoplatform has outstanding MRI performance and anti-AS effects, which may provide a new option for early diagnosis and treatment of AS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call