Abstract

It has been well known that curcumin is a powerful inhibitor of proliferation of several tumor cells. However, the molecular basis of the anti-proliferative effect of curcumin has not been investigated in detail. In this paper, we present evidence to show that curcumin inhibited proliferation of a variety of B lymphoma cells. At low concentrations curcumin inhibited the proliferation of BKS-2, an immature B cell lymphoma, more effectively than that of normal B lymphocytes and caused the apoptosis of BKS-2 cells in a dose- and time-dependent manner. Furthermore, curcumin downregulated the expression of survival genes egr-1, c-myc, and bcl-X(L) as well as the tumor suppressor gene p53 in B cells. In addition, NF-kappaB binding activity was also downregulated almost completely by curcumin. Stimulation with CpG oligonucleotides or anti-CD40 overcame growth inhibition induced by low concentrations of curcumin. Our results suggest that curcumin caused the growth arrest and apoptosis of BKS-2 immature B cell lymphoma by downregulation of growth and survival promoting genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.