Abstract
Vascular calcification (VC) is the most widespread pathological change in diseases of the vascular system. However, we do not have a good understanding of the molecular mechanisms and effective therapeutic approaches for VC. Curcumin (CUR) is a natural polyphenolic compound that has hypolipidemic, anti-inflammatory, and antioxidant effects on the cardiovascular system. Exosomes are known to have extensive miRNAs for intercellular regulation. This study investigated whether CUR attenuates VC by affecting the secretion of exosomal miRNAs. Calcification models were established in vivo and in vitro using vitamin D3 and β-glycerophosphate, respectively. Appropriate therapeutic concentrations of CUR were detected on vascular smooth muscle cells (VSMCs) using a cell counting kit 8. Exosomes were extracted by super speed centrifugation from the supernatant of cultured VSMCs and identified by transmission electron microscopy and particle size analysis. Functional and phenotypic experiments were performed in vitro to verify the effects of CUR and exosomes secreted by VSMCs treated with CUR on calcified VSMCs. Compared with the calcified control group, both CUR and exosomes secreted by VSMCs after CUR intervention attenuated calcification in VSMCs. Real-Time quantitative PCR (RT-qPCR) experiments showed that miR-92b-3p, which is important for alleviating VC, was expressed highly in both VSMCs and exosomes after CUR intervention. The mimic miR-92b-3p significantly decreased the expression of transcription factor KLF4 and osteogenic factor RUNX2 in VSMCs, while the inhibitor miR-92b-3p had the opposite effect. Based on bioinformatics databases and dual luciferase experiments, the prospective target of miR-92b-3p was determined to be KLF4. Both mRNA and protein of RUNX2 were decreased and increased in VSMCs by inhibiting and overexpressing of KLF4, respectively. In addition, in the rat calcification models, CUR attenuated vitamin D3-induced VC by increasing miR-92b-3p expression and decreasing KLF4 expression in the aorta. In conclusion, our study suggests that CUR attenuates vascular calcification via the exosomal miR-92b-3p/KLF4 axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.