Abstract

Peripheral neurotoxicity often occurs in patients receiving parenteral polymyxin therapy (i.e., colistin methanesulfonate or polymyxin B). The present study aimed to investigate the protective effect of curcumin on colistin-induced peripheral neurotoxicity using a murine model. Female C57BL/6 mice (n = 10 in each group) were randomly divided into the following: (1) control group (saline), (2) curcumin only group (200 mg/kg/day; orally), (3) colistin only group (18 mg/kg/day; i.p.), (4) colistin (18 mg/kg/day) plus curcumin 50 mg/kg/day group, (5) colistin (18 mg/kg/day) plus curcumin 100 mg/kg/day group, (6) colistin (18 mg/kg/day) plus curcumin 200 mg/kg/day group; all mice were treated for 7 days. Orally applied curcumin was detected in the brain, cerebellum, and sciatic nerve. Co-administration of oral curcumin markedly improved colistin-induced impaired sensory and motor dysfunctions in a dose-dependent manner. Curcumin supplementation at 100 and 200 mg/kg significantly decreased lipid peroxidation and upregulated catalase (CAT) and superoxide dismutase (SOD) activities, ATP levels, and Na+/K+-ATPase activity in sciatic nerve tissue, compared to the colistin alone group. Curcumin supplementation at 200 mg/kg upregulated the levels of AKT, NGF, mTOR, Nrf2, and HO-1 mRNA and concomitantly downregulated Bax, caspases-3, and -9 mRNA; it also decreased caspase-3 and caspase-9 activity. In summary, for the first time, our study reveals that the protective effect of oral curcumin on colistin induced peripheral neurotoxicity is associated with the activation of NGF/Akt and Nrf2/HO-1 pathways and inhibition of oxidative stress. This study highlights the potential clinical application of curcumin as an oral neuroprotective agent coadministered during colistin therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call