Abstract
Curcumin, the complex extracted from the traditional edible herb, has a wide range of pharmacological effects. A great deal of studies has demonstrated that curcumin could protect against cerebral ischemia-reperfusion (I/R) injury. In the present study, we aimed to test the hypothesis that curcumin reduces brain damage via regulating mitophagy and preserving mitochondrial function. To clarify the potential effect and mechanism of curcumin on cerebral I/R, we utilize MCAO followed by reperfusion rats and OGD/R neurons as cerebral I/R in vivo and in vitro, respectively. We determined the cellular ROS levels and mitochondrial function, including mitochondrial membrane potential (MMP), ATP levels, state 3 respiration and state 4 respiration. We also detected the levels of mitophagy by immunofluorescent staining and western blotting. Results found that curcumin decreased neurological deficit scores, infarct volume and morphological changes of neurons in rats after brain I/R injury. Curcumin also reduced the levels of ROS while increased MMP, ATP levels and state 3 respiration to prevent the impairment of mitochondrial function from cerebral I/R. Furthermore, curcumin enhanced the co-localization of LC3B and mitochondrial marker VDAC1, the ratio of LC3-II to LC3-I, improving cerebral I/Rinduced mitophagy. In conclusion, our results suggest that curcumin protects against cerebral I/R injury by improving mitophagy and preserving mitochondrial function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.