Abstract

BackgroundTraumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to substantial neuronal damage and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of thiscascade. In the current study, we tested the hypothesis that curcumin, a phytochemical compound with potent anti-inflammatory properties that is extracted from the rhizome Curcuma longa, alleviates acute inflammatory injury mediated by TLR4 following TBI.MethodsNeurological function, brain water content and cytokine levels were tested in TLR4-/- mice subjected to weight-drop contusion injury. Wild-type (WT) mice were injected intraperitoneally with different concentrations of curcumin or vehicle 15 minutes after TBI. At 24 hours post-injury, the activation of microglia/macrophages and TLR4 was detected by immunohistochemistry; neuronal apoptosis was measured by FJB and TUNEL staining; cytokines were assayed by ELISA; and TLR4, MyD88 and NF-κB levels were measured by Western blotting. In vitro, a co-culture system comprised of microglia and neurons was treated with curcumin following lipopolysaccharide (LPS) stimulation. TLR4 expression and morphological activation in microglia and morphological damage to neurons were detected by immunohistochemistry 24 hours post-stimulation.ResultsThe protein expression of TLR4 in pericontusional tissue reached a maximum at 24 hours post-TBI. Compared with WT mice, TLR4-/- mice showed attenuated functional impairment, brain edema and cytokine release post-TBI. In addition to improvement in the above aspects, 100 mg/kg curcumin treatment post-TBI significantly reduced the number of TLR4-positive microglia/macrophages as well as inflammatory mediator release and neuronal apoptosis in WT mice. Furthermore, Western blot analysis indicated that the levels of TLR4 and its known downstream effectors (MyD88, and NF-κB) were also decreased after curcumin treatment. Similar outcomes were observed in the microglia and neuron co-culture following treatment with curcumin after LPS stimulation. LPS increased TLR4 immunoreactivity and morphological activation in microglia and increased neuronal apoptosis, whereas curcumin normalized this upregulation. The increased protein levels of TLR4, MyD88 and NF-κB in microglia were attenuated by curcumin treatment.ConclusionsOur results suggest that post-injury, curcumin administration may improve patient outcome by reducing acute activation of microglia/macrophages and neuronal apoptosis through a mechanism involving the TLR4/MyD88/NF-κB signaling pathway in microglia/macrophages in TBI.

Highlights

  • Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external mechanical force, which can lead to temporary or permanent impairment of cognitive, physical and psychosocial functions [1]

  • Time-dependent protein expression of Toll-like receptor 4 (TLR4) A coronal brain slice showed an obvious cavity in the injured cortex, which was surrounded by hemorrhage

  • The IL-1β, IL-6, monocyte chemoattractant protein (MCP)-1 and regulated upon activation (RANTES) protein concentrations in the injured brain tissue, as determined by Enzyme-linked immunosorbent assay (ELISA), were significantly decreased in TLR4−/− mice compared with WT mice (P < 0.05, Figure 2B, C, E, F), but the tumor necrosis factor alpha (TNF-α) concentration was not significantly different between TLR4−/− and WT mice (P > 0.05, Figure 2D)

Read more

Summary

Introduction

Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external mechanical force, which can lead to temporary or permanent impairment of cognitive, physical and psychosocial functions [1]. It is the leading cause of death and disability for people under the age of 45 years. The principal cells involved in the innate immune response in the CNS, express robust levels of TLR19 [7] Among these TLRs, TLR4 has been shown to play an important role in initiating the inflammatory response following stroke or head trauma [8,9,10]. TLR4 expression and morphological activation in microglia and morphological damage to neurons were detected by immunohistochemistry 24 hours post-stimulation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.