Abstract

The effect of curcumin on the virulence of Pseudomonas aeruginosa (PAO1) using whole plant and animal pathogenicity models was investigated. The effect of curcumin on PAO1 virulence was studied by employing in vitro assays for virulence factor production, Arabidopsis thaliana/Caenorhabditis elegans pathogenicity models, and whole genome microarray analysis. It is shown that the curcumin inhibits PAO1 virulence factors such as biofilm formation, pyocyanin biosynthesis, elastase/protease activity, and acyl homoserine lactone (HSL) production. As a consequence of this, curcumin treatment resulted in the reduced pathogenicity of P. aeruginosa-C. elegans and P. aeruginosa-A. thaliana infection models. In addition, transcriptome analysis of curcumin-treated PAO1 revealed down-regulation of 31 quorum sensing (QS) genes, of which many have already been reported for virulence. The supplementation of HSLs along with the curcumin treatment resulted in increased pathogencity and recovery of higher bacterial titers in a plant pathogenecity model. These data reveal the involvement of curcumin in QS interruption to reduce pathogenicity. Curcumin attenuates PAO1 virulence by down-regulation of virulence factors, QS, and biofilm initiation genes. The effect of curcumin on multiple targets such as virulence, QS, and biofilm initiation makes curcumin a potential supplemental molecule for the treatment of P. aeruginosa infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call