Abstract

Although over 100 species of Curcuma are reported, only Curcuma longa is extensively studied. Curcuma raktakanda, a poorly studied species, is most commonly distributed in the Kerala state of India. For the first time, we examined the efficacy of different fractions (acetone, hexane, and ethyl acetate) of C. raktakanda against glioma, cervical, and breast cancer cell lines. As determined by mitochondrial reductase activity assay, the viability of cancer cells was decreased in a concentration-dependent manner by the three fractions. The half maximal inhibitory concentration (IC-50) values after the treatment of C-6 glioma cells for 48 h was found to be 32.97 µg/mL (acetone extract), 40.63 µg/mL (hexane extract), and 51.65 µg/mL (ethyl acetate extract). Of the three fractions, the acetone fraction was more effective. The long-term colony formation of cancer cells was significantly suppressed by the acetone fraction. Analyses using DAPI (4′,6-diamidino-2-phenylindole) staining, AO/PI (acridine orange/propidium iodide) staining, DNA laddering, and sub-G1 population revealed that the acetone extract induced apoptosis in glioma cells. The extract induced reactive oxygen species generation and suppressed the expression of cell survival proteins. The migration of cancer cells was also suppressed by the acetone extract. The gas chromatography-mass spectrometry (GC-MS) analysis indicated that tetracontane, dotriacontane, hexatriacontane, pentacosane, hexacosane, and eicosane are the major components in the acetone extract. Collectively, the extract from C. raktakanda exhibited anti-carcinogenic activities in cancer cells. We are exploring whether the phytoconstituents, individually, or collectively contribute to the anti-cancer activities of C. raktakanda.

Highlights

  • Glioblastoma multiforme (GBM, glioblastoma or grade IV glioma) is the most aggressive, invasive, and most common tumor of the central nervous system [1]

  • We used breast (MDA-MB-231, MCF-7) and cervical (HeLa) cancer cell lines to determine the specificity of the extract

  • In HeLa cells, acetone extract was more effective compared to the other two extracts. These results suggest that the cancer cells differ in their sensitivity to the C. raktakanda

Read more

Summary

Introduction

Glioblastoma multiforme (GBM, glioblastoma or grade IV glioma) is the most aggressive, invasive, and most common tumor of the central nervous system [1]. These tumors arise from astrocytes of the human brain and show high resistance to currently available therapy. Because of the poor penetration of the blood brain barrier and development of drug resistance, the chemotherapy options for glioblastoma are limited [3,4]. Some drugs such as temozolomide have been approved, glioblastoma remains. The implication of these reports necessitates the development of novel therapy that can be used either as a single agent or as an adjuvant for glioblastoma therapy

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.