Abstract
Stormwater control measures (SCMs) are employed to reduce the multitude of deleterious impacts of urban runoff on receiving waters. Sediment accumulation in infiltration-based SCMs can clog these systems, resulting in lack of hydraulic function and reduced stormwater treatment efficacy. As such, pretreatment devices, such as forebays, filter strips, or catch basin sumps, are typically employed upstream of SCMs to remove sediment and prolong maintenance intervals. However, the tendency of SCMs to be retrofitted into space-constrained, ultra-urban areas makes including pretreatment technologies difficult. An alternative pretreatment device for green infrastructure SCMs was developed and tested in the laboratory; alterations were made to the standard curb and gutter, which is ubiquitous within urban environments, to increase the roughness of these surfaces. Roughness was added to the curb and/or gutter of mock road sections constructed of expanded polystyrene (EPS) foam using a computer numerical control (CNC) router. Twenty-one patterns with varying degrees of depth, shape, and spacing were implemented to trap sediment from simulated runoff; samples were collected upstream and downstream of the added roughness and analyzed for sediment removal and particle capture. Patterns which included added roughness in both the curb and gutter reduced total suspended solids (TSS) concentrations by up to 95% (median 85%) and reduced median d50 and d90 in runoff from 46.9 to 39.4 μm and 322 to 100 μm, respectively. Continued TSS removal was observed during repeated testing designed to simulate up to seven runoff events, indicating the potential for sustained sediment accumulation before the need for maintenance via regular street sweeping. With routine maintenance performed at appropriate intervals, these findings indicate that added roughness to curb and gutters could be utilized as a viable pretreatment technology for green infrastructure SCMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.