Abstract
Curable precursors are prepared from chemical recycling of degradable polylactic acid (PLA) for development of aliphatic polyester thermoset materials. PLA resin (NatureWork 4042D) was de-polymerized via glycolysis under various conditions to produce PLA glycolysates (GlyPLAs), whose chain-ends mainly consist of hydroxyl groups with $$\bar{M}_{n}$$ ranging from 3,600 to 17,000 g/mol. Unsaturated double bonds (DB) were introduced into GlyPLA structures by end-capping with methacrylic anhydride to generate curable LA-precursors. The end-capping efficiency is strongly dependent on the molecular weight of GlyPLAs, where smaller-sized glycolysates produce LA-precursors with higher DB content. Curing behaviors of the precursors are thoroughly examined. DSC and FTIR results show that curing reactions at 140 °C are completed after 2 h for all samples. Results on gel fraction indicate that LA-precursor with $$\bar{M}_{n}$$ ~ 3,600 g/mol is the most effective candidate for producing network products with high crosslink density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.