Abstract

Better understanding the crystal-facet engineering of a crystal with tailored architecture has demonstrated a significant implication for rational design and synthesis of promising micro-/nanostructure. In the past decades, extensive investigations have been devoted to the development of cuprous oxide (Cu2O) crystals with tailored architectures, which can provide a meritorious platform for not only revealing the structure-property-performance relationship and but also improving the performances in their practical applications. Several previous reviews have mainly reported the partial summaries of the advances in facet-dependent properties of Cu2O crystals. However, a comprehensive summary on Cu2O crystals is lacking and highly desirable to further promote the development of function-oriented Cu2O-based micro-/nanostructures. In this review, we will comprehensively highlight the important progresses in Cu2O crystals with tailored architectures, including the synthetic strategies and corresponding growth mechanisms, the fundamental properties of different crystallographic facets, the functional modifications (including doping and hybridization), and their potential applications. Several urgent issues and perspective are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.